
Week 6 - Monday



 What did we talk about last time?
 More recursion
 Exam post mortem
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public static int fib2(int a, int b, int n) {

if (n <= 2) {
return b;

} else {
return fib2(b, a + b, n - 1);

}
}

// proxy method
public static int fib(int n) {
return fib2(1, 1, n);

}

Base Case

Recursive
Case





 We want to raise a number x to a power n, like so: xn

 We allow x to be real, but n must be an integer greater than or 
equal to 0

 Example: (4.5)13 = 310286355.9971923828125



 Base case (n = 0):
 Result = 1

 Recursive case (n > 0):
 Result = x ∙ x(n – 1)



public static double power(double x, int n) {

if (n == 0) {
return 1;

} else {
return x * power(x, n – 1);

}

}

Base Case

Recursive
Case



 Each call reduces n by 1
 n + 1 total calls
 What's the running time?
 Θ(n)



 We need to structure the recursion differently
 Instead of reducing n by 1 each time, can we reduce it by a lot 

more?
 It’s true that xn = x ∙ x(n – 1)

 But, it is also true that xn = x(n/2) ∙ x(n/2)



 Assume that n is a power of 2
 Base case (n = 1):
 Result = x

 Recursive case (n > 1):
 Result = (x(n/2))2



public static double power2(double x, int n) {
double temp;
if (n == 1) {

return x;
} else {

temp = power2( x, n/2 );
return temp * temp;

}
}

Base Case

Recursive
Case



 Each call reduces n by half
 log2(n) total calls
 Just like binary search
 Can we expand the algorithm to even and odd values of n?



 Base case (n = 1):
 Result = x

 Recursive cases (n > 1):
 If n is even, result = (x(n/2))2

 If n is odd, result = x ∙ (x((n – 1)/2))2



public static double power3( double x, int n )
{
double temp;
if( n == 1 )

return x;
else if( n % 2 == 0 )
{

temp = power3( x, n/2 );
return temp * temp;

}
else
{

temp = power3( x, (n – 1)/2 );
return x * temp * temp;

}
}

Base Case

Recursive
Cases



 Each call reduces n by half (more or less)
 Θ(log2 n) total calls
 Does as well as power2()
 Better yet, we can use this solution to get a logarithmic time 

answer for Fibonacci!

 The nth term of the Fibonacci sequence is:
𝜑𝜑𝑛𝑛 − (1 − 𝜑𝜑)𝑛𝑛

5
 Where 𝜑𝜑 = 1+ 5

2





 Beautiful divide and conquer
 Base case: List has size 1
 Recursive case:
 Divide your list in half
 Recursively merge sort each half
 Merge the two halves back together in sorted order



 Great.  Now, how long does it take?
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 At each level, Θ 𝑛𝑛 work is done
 Splitting up the array
 Merging the array back

 There are log𝑛𝑛 levels
 Total running time is Θ 𝑛𝑛 log 𝑛𝑛





 Symbol tables
 Trees
 Binary search trees (BSTs)
 BST implementation



 Work on Project 2
 Finish Assignment 3
 Due this Friday

 Keep reading Section 3.2
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