
Week 6 - Monday

 What did we talk about last time?
 More recursion
 Exam post mortem

Recursion

Infix to Postfix Converter

MAGGIE SMITH 1934 - 2024

public static int fib2(int a, int b, int n) {

if (n <= 2) {
return b;

} else {
return fib2(b, a + b, n - 1);

}
}

// proxy method
public static int fib(int n) {
return fib2(1, 1, n);

}

Base Case

Recursive
Case

 We want to raise a number x to a power n, like so: xn

 We allow x to be real, but n must be an integer greater than or
equal to 0

 Example: (4.5)13 = 310286355.9971923828125

 Base case (n = 0):
 Result = 1

 Recursive case (n > 0):
 Result = x ∙ x(n – 1)

public static double power(double x, int n) {

if (n == 0) {
return 1;

} else {
return x * power(x, n – 1);

}

}

Base Case

Recursive
Case

 Each call reduces n by 1
 n + 1 total calls
 What's the running time?
 Θ(n)

 We need to structure the recursion differently
 Instead of reducing n by 1 each time, can we reduce it by a lot

more?
 It’s true that xn = x ∙ x(n – 1)

 But, it is also true that xn = x(n/2) ∙ x(n/2)

 Assume that n is a power of 2
 Base case (n = 1):
 Result = x

 Recursive case (n > 1):
 Result = (x(n/2))2

public static double power2(double x, int n) {
double temp;
if (n == 1) {

return x;
} else {

temp = power2(x, n/2);
return temp * temp;

}
}

Base Case

Recursive
Case

 Each call reduces n by half
 log2(n) total calls
 Just like binary search
 Can we expand the algorithm to even and odd values of n?

 Base case (n = 1):
 Result = x

 Recursive cases (n > 1):
 If n is even, result = (x(n/2))2

 If n is odd, result = x ∙ (x((n – 1)/2))2

public static double power3(double x, int n)
{
double temp;
if(n == 1)

return x;
else if(n % 2 == 0)
{

temp = power3(x, n/2);
return temp * temp;

}
else
{

temp = power3(x, (n – 1)/2);
return x * temp * temp;

}
}

Base Case

Recursive
Cases

 Each call reduces n by half (more or less)
 Θ(log2 n) total calls
 Does as well as power2()
 Better yet, we can use this solution to get a logarithmic time

answer for Fibonacci!

 The nth term of the Fibonacci sequence is:
𝜑𝜑𝑛𝑛 − (1 − 𝜑𝜑)𝑛𝑛

5
 Where 𝜑𝜑 = 1+ 5

2

 Beautiful divide and conquer
 Base case: List has size 1
 Recursive case:
 Divide your list in half
 Recursively merge sort each half
 Merge the two halves back together in sorted order

 Great. Now, how long does it take?

𝑛𝑛 items

𝑛𝑛
2

items 𝑛𝑛
2

items

𝑛𝑛
4

items
𝑛𝑛
4

items 𝑛𝑛
4

items
𝑛𝑛
4

items

⋮
1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item 1 item

log𝑛𝑛
levels

 At each level, Θ 𝑛𝑛 work is done
 Splitting up the array
 Merging the array back

 There are log𝑛𝑛 levels
 Total running time is Θ 𝑛𝑛 log 𝑛𝑛

 Symbol tables
 Trees
 Binary search trees (BSTs)
 BST implementation

 Work on Project 2
 Finish Assignment 3
 Due this Friday

 Keep reading Section 3.2

	COMP 2100
	Last time
	Questions?
	Assignment 3
	Project 2
	Slide Number 6
	Back to Fibonacci
	Code for better Fibonacci
	Recursion for Exponentiation
	Exponentiation
	Recursion for Exponentiation
	Code for Exponentiation
	Running time for power
	Can we do better than linear?
	New recursion for exponentiation
	Code for better exponentiation
	Running time for power2
	Even newer recursion for exponentiation
	Code for Even Better Exponentiation
	Running time for power3
	Merge Sort
	Merge Sort algorithm (recursive)
	Let's code that up…
	Running time for merge sort
	Running time for merge sort
	Upcoming
	Next time…
	Reminders

